segunda-feira, 31 de março de 2014

Working hard on cDNA synthesis

Hello,
Today, we, Maithê and Paula, will tell you a little about what we do with the collected samples of Loricariidae when they arrive in the lab. As previously written, after fishes has been collected and livers extracted, it's necessary to extract RNA and DNA. What do we do next with this genetic material?

Well, while the DNA is sent to the Paulo Buckup's team, our collaborators at the National Museum of Natural History, the RNA is used for synthesis of complementary DNA (cDNA). But what is cDNA, how is it done and serve for??
The cDNA is a strand of DNA complementary to a RNA molecule and made by the aid of an enzyme called reverse transcriptase. To make this happen, we need: 1 - buffer solution, to maintain the ideal pH; 2 - reverse transcriptase, which is the enzyme that will do the reverse transcription of RNA to cDNA ; 3 - dNTPs, the nucleotides used as substrate by the reverse transcriptase to synthesize cDNA; 4 - the RNA sample, that serves as a template for the reverse transcriptate; 5 - and primer to help the reaction start. We used anchored oligo dT primers.Those are a sequence of 18 to 25 Ts that bind to the poly A tail of messenger RNA (mRNA).
These reagents are present in the AppliedBiosystems' kit ''High Capacity cDNA Reverse Transcription Kit" and they are put together in ideal proportion, according to the manufacturer's protocol for cDNA synthesis, that occurs at 37 °C during 120 minutes.

So this is another step needed to achieve our goal. We hope you have enjoyed. Keep up with our blog !! Soon, we are going to write more about our adventures in the Lab.

segunda-feira, 6 de janeiro de 2014

The crew went to the circus

Today, Jan 6, we came back to work after a short holyday season break. Our two brave undergrad students deserved a couple of weeks off in order to recharge their batteries for the intense year to come.
They also deserved to celebrate the nice piece of work we have been doing during the first four months of this PEER Science project. For that reason, we went to the circus! More specifically we went to see Corteo, the Cirque du Soleil show that recently debut in Rio de Janeiro.


Corteo exhibit a dream of a circus clown. Not a regular dream but the dream of his own funeral! As it might be expected, the funeral of a clown is full of joy with traditional circus acts and surprising elements. Moreover, Corteo (as most of Cirque spectacles) shows that it is possible to “make magic” and delight the audience in limited space and with relatively simple tricks.
Since the first time I went to see Cirque du Soleil, I have been wondering the difference between the Cirque and any other common troupe. Yes, I believe the Cirque is common because it is made by normal people (although some appear not to have bones while others appear just to have muscle). The difference? Maybe the amount of money invested? Possibly! But if so, that is most probably not to acquire incredible expensive equipments but to hire the best people and to provide them an ever exciting environment. The most important difference relays on the people and not on the infrastructure! Just being passionate for what they do, they can devote the amount of time and energy in order to train for up to the perfection. Just unconditionally trusting on the work of a partner, one can throw yourself into the open air to be caught by the partner. Just being extremely fine tuned, artists and musicians can pace the rhythm for the 90 minutes of show. 



The take home message for my students: lets keep the passion for our work, lets keep the friendly and exciting environment of our group, lets work even harder and eventually we will became a kind of Cirque du Soleil in our field of science. In fact, as long as we travel through this road, it really does not matter how far we go. Trailing the path is more important than reaching its end.


Happy new year to all our followers.